Turbulent Transition in Electromagnetically Levitated Liquid Metal Droplets
نویسندگان
چکیده
iv ACKNOWLEDGMENTS Thanks to my family. The condition of fluid flow has been proven to have a significant influence on a wide variety of material processes. In electromagnetic levitation (EML) experiments, the internal flow is driven primarily by electromagnetic forces. In 1-g, the positioning forces are very strong and the internal flows are turbulent. To reduce the flows driven by the levitation field, experiments may be performed in reduced gravity and parabolic flights experiments have been adopted as the support in advance. Tracer particles on the surface of levitated droplets in EML experiment performed by SUPOS have been used to investigate the transition from laminar to turbulent flow. A sample of NiAl3 was electromagnetically levitated in parabolic flight and the laminar-turbulent transition observed from the case was studied in this work. For the sample with clearly visible tracer patterns, the fluid flow has been numerical evaluated with magnetohydrodynamic models and the laminar-turbulent transition happened during the acceleration of the flow, instead of steady state. The Reynolds number at transition was estimated approximately as 860 by the experiment record. The predicted time to transition obtained from the results of simulation showed significant difference (~ up to 300 times) compared with the time obtained from the experiment—0.37s. The discrepancy between numerical and experimental results could not be explained by the proposed hypotheses: geometry, boundary conditions or solid core. The simulations predict that vi the flow would become turbulent almost instantaneously after the droplet was fully molten. There are important physics shown by the simulation which were not captured.
منابع مشابه
Repartitioning of glycerol between levitated and surrounding deposited glycerol/NaNO3/H2O droplets
Repartitioning of semi-volatile organic compounds (SVOCs) between particles is an important process to understand the particle growth and shrinkage in the atmosphere environment. Here, by using optical tweezers coupled with cavity-enhanced Raman spectroscopy, we report the repartitioning of glycerol between a levitated glycerol/NaNO3/H2O droplet and surrounding glycerol/NaNO3/H2O droplets depos...
متن کاملStudy of instabilities in a quasi-2D MHD duct flow with an inflectional velocity profile
The mechanisms responsible for instabilities and a transition to turbulence in liquid metal duct flows of a fusion blanket are not understood very well, which limits predictive capabilities for heat and material transport in a blanket. In order to elucidate such mechanisms in quasi-two-dimensional (Q2D) magnetohydrodynamic flows with inflection points, an experimental and computational effort i...
متن کاملNumerical Study of turbulent free convection of liquid metal with constant and variable properties in the presence of magnetic field
In this research, turbulent MHD convection of liquid metal with constant and variable properties is investigated numerically. The finite volume method is applied to model the fluid flow and natural convection heat transfer in a square cavity. The fluid flow and heat transfer were simulated and compared for two cases constant and variable properties. It is observed that for the case variable pro...
متن کاملA new electrodynamic balance design for low temperature 1 studies
15 In this paper we describe a newly designed cold electrodynamic balance (CEDB) system, 16 built to study the evaporation kinetics and freezing properties of supercooled water droplets. 17 The temperature of the CEDB chamber at the location of the levitated water droplet can be 18 controlled in the range: -40 ̊C to +40 ̊C, which is achieved using a combination of liquid 19 nitrogen cooling and...
متن کاملA new electrodynamic balance (EDB) design for low-temperature studies: application to immersion freezing of pollen extract bioaerosols
In this paper we describe a newly designed cold electrodynamic balance (CEDB) system, built to study the evaporation kinetics and freezing properties of supercooled water droplets. The temperature of the CEDB chamber at the location of the levitated water droplet can be controlled in the range −40 to +40 C, which is achieved using a combination of liquid nitrogen cooling and heating by positive...
متن کامل